Semi-convergence of an Alternating-direction Iterative Method for Singular Saddle Point Problems

نویسندگان

  • YINGZHE FAN
  • ZHANGXIN CHEN
چکیده

For large-scale sparse saddle point problems, Peng and Li [12] have recently proposed a new alternating-direction iterative method for solving nonsingular saddle point problems, which is more competitive (in terms of iteration steps and CPU time) than some classical iterative methods such as Uzawa-type and HSS (Hermitian skew splitting) methods. In this paper, we further study this method when it is applied to the solution of singular saddle point problems and prove that it is semi-convergent under suitable conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Acceleration of One-parameter Relaxation Methods for Singular Saddle Point Problems

In this paper, we first introduce two one-parameter relaxation (OPR) iterative methods for solving singular saddle point problems whose semi-convergence rate can be accelerated by using scaled preconditioners. Next we present formulas for finding their optimal parameters which yield the best semi-convergence rate. Lastly, numerical experiments are provided to examine the efficiency of the OPR m...

متن کامل

Performance Analysis of a Special GPIU Method for Singular Saddle Point Problems

In this paper, we first provide semi-convergence analysis for a special GPIU(Generalized Parameterized Inexact Uzawa) method with singular preconditioners for solving singular saddle point problems. We next provide a methodology of how to choose nearly quasi-optimal parameters of the special GPIU method. Lastly, numerical experiments are carried out to examine the effectiveness of the special G...

متن کامل

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems

A unified convergence result is derived for an entire class of stationary iterative methods for solving equality constrained quadratic programs or saddle point problems. This class is constructed from essentially all possible splittings of the n×n submatrix residing in the (1,1)block of the (n+m)×(n+m) augmented matrix that would generate non-expansive iterations in R. The classic multiplier me...

متن کامل

The semi-convergence of GSI method for singular saddle point problems

Recently, Miao and Wang considered the GSI method for solving nonsingular saddle point problems and studied the convergence of the GSI method. In this paper, we prove the semi-convergence of the GSI method when it is applied to solve the singular saddle point problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014